This model illustrates the curvature of spacetime around a supermassive object, accompanied by a detailed data sheet. In simple terms, gravity can be seen as the curvature of spacetime because massive objects like planets and stars bend the fabric of space and time around them. This idea comes from Einstein's theory of General Relativity.
This formula shows that gravitational acceleration decreases with the square of the distance. For example, Earth's gravitational acceleration at sea level (r=6.371 × 10^6 m and M = 5,972 × 10^24 kg) is approximately 9.81 m/s^2.
Experiment with different values for M and r to see how they affect gravitational acceleration. For instance, you can calculate the acceleration at the altitude of the International Space Station, that the astronauts on board experience!
So, the gravitational acceleration experienced by an object due to our 6-gram ball of filament at a distance of 1 cm is approximately a = 4.0044 × 10^−9 m/s^2
A nice real life demonstration of how this works is shown in this video. Check it out!
You shall not share, sub-license, sell, rent, host, transfer, or distribute in any way the digital or 3D printed versions of this object, nor any other derivative work of this object in its digital or physical format (including - but not limited to - remixes of this object, and hosting on other digital platforms). The objects may not be used without permission in any way whatsoever in which you charge money, or collect fees.
Comment & Rating (3)